Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sonia Fresu, Markus Schürmann, Hans Preut* and Peter Eilbracht

Fachbereich Chemie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany

Correspondence e-mail: uch002@uxp1.hrz.uni-dortmund.de

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.043$
$w R$ factor $=0.071$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

rac-($1 R, 11 R, 14 S, 18 R)$-Methyl 18-hydroxy-19-oxotricyclo[9.7.1.0 ${ }^{1,14}$]nonadecane-11-carboxylate

The investigated crystal of the title compound, $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}$, contains two molecules in the asymmetric unit. One molecule shows disorder for two atoms in the 12 -membered ring. The two independent molecules show only slight conformational differences. Four molecules are linked via two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $\left[\mathrm{O} \cdots \mathrm{O}=2.816\right.$ (2) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=163^{\circ}$; $\mathrm{O} \cdots \mathrm{O}=2.764(2) \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=163^{\circ}$] and a centrosymmetric 16-membered heterocycle containing four hydrogen bonds is formed.

Comment

The title compound, (I), was obtained in a study of the application of the one-pot tandem hydroformylation/aldol condensation of ethyl 12-allyl-15-oxobicyclo[9.3.1]penta-decane-1-carboxylate, which was obtained by 1,4-conjugate addition of allytrimethylsilane in the presence of titanium tetrachloride (Rahm \& Pereyre, 1977). Owing to the complex tricyclic structure of the title compound, (I), bearing four stereogenic centres, an X-ray analysis had to be performed. The tricyclic structure is determined to be a cis-fused decalin system attached to the cyclododecanone in the positions α, α^{\prime} to its carbonyl group. Thus, both the Michael addition and the subsequent hydroformylation/aldol condensation occur from the side of the carbonyl group of the bicyclic starting compound, whereas the OH group is on the opposite side. Both six-membered rings have a chair conformation.

(I)

The two crystallographically independent molecules show only slight conformational differences as is indicated by the torsion angles. Four molecules are linked via two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $\left[\mathrm{O} \cdots \mathrm{O}=2.816\right.$ (2) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=163^{\circ}$; $\mathrm{O} \cdots \mathrm{O}=2.764(2) \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=163^{\circ}$] and a centrosymmetric 16 -membered heterocycle $\left(\mathrm{H} 1^{\prime}-\mathrm{O} 1^{\prime}-\right.$ $\mathrm{C} 18^{\prime}-\mathrm{C} 1^{\prime}-\mathrm{C} 19^{\prime}-\mathrm{O} 2^{\prime} \cdots \mathrm{H} 1-\mathrm{O} 1 \cdots \mathrm{H} 1^{\prime \mathrm{i}}-\mathrm{O} 1^{\prime \mathrm{i}}-\mathrm{C} 18^{\prime \mathrm{i}}-$ $\mathrm{C}^{\prime \mathrm{i}}-\mathrm{C} 19^{\prime \mathrm{i}}-\mathrm{O} 2^{\prime \mathrm{i}} \cdots \mathrm{H} 1^{\mathrm{i}}-\mathrm{O} 1^{\mathrm{i}} \cdots$) is formed [symmetry code: (i) $2-x, 2-y,-z]$.

Experimental

A solution of methyl 12-allyl-15-oxobicyclo[9.3.1]pentadecane-1carboxylate (1 equivalent), BIPHEPHOS ($2,2^{\prime}$-bis $\left\{\left[\left(2,2^{\prime}\right.\right.\right.$-bisphen-oxy)phosphino]oxy\}-3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl; $4 \mathrm{~mol} \%$), p-toluenesulfonic acid ($5 \mathrm{~mol} \%$) and $\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}\right](1 \mathrm{~mol} \%)$ in

Received 27 January 2004 Accepted 11 February 2004 Online 20 February 2004

Figure 1

View of one of the independent molecules of the title compound ($X P$ in SHELXTL; Sheldrick, 1991), showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 30% probability level. H atoms have been omitted for clarity.
anhydrous dichloromethane (20 ml) was placed in an autoclave. After flushing with argon, the reactor was pressurized with 10 bar carbon monoxide and 10 bar hydrogen, magnetically stirred and heated to 333 K for 3 d . The autoclave was then allowed to cool to room temperature. After expanding the syn gas, the remaining solution was filtered through alumina using MTBE (methyl tert-butyl ether) as eluant. The solvent was removed by rotary evaporation and the residue was analysed by gas chromatography. The residue was subjected to silica-gel column chromatography using a solution of cyclohexane/diethyl ether (10:1) as eluant. Recrystallization from diethyl ether gave the title compound in 43% yield. Spectroscopic data, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.01(b s, 1 \mathrm{H}, \mathrm{OH}), 3.67(s, 3 \mathrm{H}$, CH_{3}), 2.38 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2 \text { ring }}$), 2.07 ($m, 2 \mathrm{H}, \mathrm{CH}_{2 \text { ring }}$), 1.81 ($\mathrm{m}, 4 \mathrm{H}$, $\mathrm{CH}_{2 \text { ring }}$), 1.75 ($m, 2 \mathrm{H}, \mathrm{CH}_{2 \text { ring }}$), 1.54 ($m, 7 \mathrm{H}, \mathrm{CH}_{2 \text { ring }}$), 1.34 ($m, 13 \mathrm{H}$, $\mathrm{CH}_{2 \text { ring }}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.83(\mathrm{CO}), 174.11(\mathrm{CO})$, $68.64(\mathrm{CH}-\mathrm{OH}), 62.16\left(\mathrm{C}_{q}\right), 58.86\left(\mathrm{C}_{q}\right), 53.90\left(\mathrm{CH}_{3}\right), 37.77\left(\mathrm{CH}_{2 \text { ring }}\right)$, $32.51\left(\mathrm{CH}_{2 \text { ring }}\right), 31.10\left(\mathrm{CH}_{2 \text { ring }}\right), 29.50\left(\mathrm{CH}_{2 \text { ring }}\right), 28.58\left(\mathrm{CH}_{2 \text { ring }}\right), 27.86$ $\left(\mathrm{CH}_{2 \text { ring }}\right), 24.83\left(\mathrm{CH}_{2 \text { ring }}\right), 24.42\left(\mathrm{CH}_{2 \text { ring }}\right), 24.22\left(\mathrm{CH}_{2 \text { ring }}\right), 24.03$ $\left(\mathrm{CH}_{2 \text { ring }}\right), 23.87\left(\mathrm{CH}_{2 \text { ring }}\right), 23.55\left(\mathrm{CH}_{2 \text { ring }}\right), 22.56\left(\mathrm{CH}_{2 \text { ring }}\right), 21.75$ $\left(\mathrm{CH}_{2 \text { ring }}\right), 20.83\left(\mathrm{CH}_{2 \text { ring }}\right) ;$ MS-LR $(\mathrm{EI}, 70 \mathrm{eV}): m / z(\%)=350\left(M^{+}\right.$, 5.65), 338 (6.17), 306 (16.15), 294 (6.27), 282 (5.99), 246, (8.84), 210 (6.92), 184 (39.45), 105 (100), 93 (13.36), 81 (36.17), 69 (29.34), 55 (53.59), 41 (68.86), 29 (52.27), 18 (9.43); High Resolution MS (EI, 70 eV): calculated: 350.2457, found 350.2484; IR (Pressling, KBr), v $\left(\mathrm{cm}^{-1}\right): 3506(s), 2936(s), 2865(s), 2850(s), 1737(s), 1680(s), 1467$ (m), 1446 (s), 1277 (m), 1245 (m), 1186 (m), 1102 (m), 815 (m); elemental analysis calculated: C 71.96, H 9.78\%; found: C 71.8, H 10.0%.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{4}$
$M_{r}=350.48$
Monoclinic, $P 2_{1 / 2} / n$
$a=10.5029$ (9) А А
$b=11.0460(2) \AA$
$c=34.5904$ (9) \AA
$\beta=97.0550(10)^{\circ}$
$V=3982.6$ (4) \AA^{3}
$Z=8$

$$
\begin{aligned}
& D_{x}=1.169 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 31011 \\
& \quad \text { reflections } \\
& \theta=3.0-25.3^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=291(1) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.20 \times 0.15 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: none 31011 measured reflections 7110 independent reflections 2449 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.071$
$S=0.91$
7110 reflections
474 parameters
H -atom parameters constrained

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

C19-C1-C2-C3	-62.8 (3)	$\mathrm{C} 19^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C}^{\prime}{ }^{\prime}-\mathrm{C} 3^{\prime}$	-66.3 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	172.9 (2)	$\mathrm{C1}^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}$	172.5 (2)
C2-C3-C4-C5	-143.3 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime} \mathrm{A}$	-142.4 (7)
C3-C4-C5-C6	47.7 (5)	$\mathrm{C} 3^{\prime}-\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime} A-\mathrm{C}^{\prime}$	47.1 (11)
C4-C5-C6-C7	55.7 (4)	$\mathrm{C} 4^{\prime}-\mathrm{C} 5^{\prime} A-\mathrm{C}^{\prime}-\mathrm{C} 7^{\prime} A$	62.2 (9)
C5-C6-C7-C8	-158.7 (3)	$\mathrm{C} 5^{\prime} A-\mathrm{C}^{\prime}-\mathrm{C}^{\prime} A-\mathrm{C}^{\prime}$	-154.4 (5)
C6-C7-C8-C9	75.5 (3)	$\mathrm{C} 6^{\prime}-\mathrm{C}^{\prime} A-\mathrm{C} 8^{\prime}-\mathrm{C} 9^{\prime}$	68.9 (5)
C7-C8-C9-C10	74.5 (3)	$\mathrm{C} 7^{\prime} A-\mathrm{C}^{\prime}-\mathrm{C} 9^{\prime}-\mathrm{C} 10^{\prime}$	81.1 (4)
C8-C9-C10-C11	-168.8 (2)	$\mathrm{C} 8^{\prime}-\mathrm{C} 9^{\prime}-\mathrm{C} 10^{\prime}-\mathrm{C} 11^{\prime}$	-172.7 (2)
C9-C10-C11-C19	55.1 (3)	$\mathrm{C} 9^{\prime}-\mathrm{C} 10^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{C} 19^{\prime}$	53.4 (3)
C19-C11-C12-C13	35.2 (3)	$\mathrm{C} 19^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{C} 12^{\prime}-\mathrm{C} 13^{\prime}$	38.4 (3)
C11-C12-C13-C14	-52.6 (3)	$\mathrm{C} 11^{\prime}-\mathrm{C} 12^{\prime}-\mathrm{C} 13^{\prime}-\mathrm{C} 14^{\prime}$	-54.4 (3)
C12-C13-C14-C1	62.1 (3)	$\mathrm{C} 12^{\prime}-\mathrm{C} 13^{\prime}-\mathrm{C} 14^{\prime}-\mathrm{C1}^{\prime}$	62.0 (3)
C19-C1-C14-C13	-52.9 (2)	$\mathrm{C} 18^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 14^{\prime}-\mathrm{C} 15^{\prime}$	-48.7 (3)
C18-C1-C14-C15	-47.8 (3)	$\mathrm{C} 19^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 14^{\prime}-\mathrm{C} 13^{\prime}$	-52.3 (3)
C1-C14-C15-C16	54.2 (3)	$\mathrm{C1}^{\prime}-\mathrm{C} 14^{\prime}-\mathrm{C} 15^{\prime}-\mathrm{C} 16^{\prime}$	54.7 (3)
C14-C15-C16-C17	-58.7 (3)	$\mathrm{C} 14^{\prime}-\mathrm{C} 15^{\prime}-\mathrm{C} 16^{\prime}-\mathrm{C} 17^{\prime}$	-58.3 (3)
C15-C16-C17-C18	60.0 (3)	$\mathrm{C} 15^{\prime}-\mathrm{C} 16^{\prime}-\mathrm{C} 17^{\prime}-\mathrm{C} 18^{\prime}$	58.3 (3)
C16-C17-C18-C1	-55.7 (3)	$\mathrm{C} 16^{\prime}-\mathrm{C17}^{\prime}-\mathrm{C1}^{\prime}{ }^{\prime}-\mathrm{C1}^{\prime}$	-55.6 (3)
C14-C1-C18-C17	48.3 (3)	$\mathrm{C} 14^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 18^{\prime}-\mathrm{C1}^{\prime}{ }^{\prime}$	49.5 (3)
C14-C1-C19-C11	38.4 (3)	$\mathrm{C} 14^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C} 19^{\prime}-\mathrm{C} 11^{\prime}$	39.2 (3)
C2-C1-C19-C11	-81.7 (3)	$\mathrm{C} 2^{\prime}-\mathrm{C1}^{\prime}-\mathrm{C1}^{\prime}{ }^{\prime}-\mathrm{C11}^{\prime}$	-80.3 (3)
C10-C11-C19-C1	93.4 (2)	$\mathrm{C} 12^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{C19}^{\prime}-\mathrm{C1}^{\prime}$	-32.5 (3)
C12-C11-C19-C1	-29.5 (3)	$\mathrm{C} 10^{\prime}-\mathrm{C} 11^{\prime}-\mathrm{C19}^{\prime}-\mathrm{C1}^{\prime}$	90.6 (2)

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1}-\mathrm{H} 1 \cdots \mathrm{O}^{\prime}{ }^{\prime}$	0.82	2.02	$2.816(2)$	163
$\mathrm{O}^{\prime}-\mathrm{H}^{\prime} \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.97	$2.764(2)$	163

Symmetry code: (i) $2-x, 2-y,-z$.
H atoms were placed in calculated positions, with $U_{\text {iso }}$ values constrained to be 1.5 times $U_{\text {eq }}$ of the carrier atom for the methyl-H and the hydroxyl-H and 1.2 times U_{eq} for the remaining H atoms. The methyl and the hydroxyl groups were allowed to rotate but not to tip. For the disordered positions of atoms C^{\prime} and C^{\prime}, two split positions $\left(\mathrm{C}^{\prime} / \mathrm{C}^{\prime} A\right.$ and $C 7^{\prime} / \mathrm{C} 7^{\prime} A$) were refined anisotropically, each with an occupancy factor 0.5 .

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97, PARST95 (Nardelli, 1995) and PLATON (Spek, 2001).

References

Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

organic papers

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Rahm, A. \& Pereyre, M. (1977). J. Am. Chem. Soc. pp. 1673-1675.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.

